Wolfram Alpha:
Search by keyword:
Astronomy
Chemistry
Classical Mechanics
Classical Physics
Climate Change
Cosmology
Finance and Accounting
Game Theory
General Relativity
Group Theory
Lagrangian and Hamiltonian Mechanics
Macroeconomics
Mathematics
Microeconomics
Nuclear Physics
Particle Physics
Probability and Statistics
Programming and Computer Science
Quantum Computing
Quantum Field Theory
Quantum Mechanics
Semiconductor Reliability
Solid State Electronics
Special Relativity
Statistical Mechanics
String Theory
Superconductivity
Supersymmetry (SUSY) and Grand Unified Theory (GUT)
The Standard Model
Topology
Units, Constants and Useful Formulas
Contravariant and Covariant Components of a Vector
--------------------------------------------------
Consider cartesian coordinates.
^ X2
|
| -
x2|......c -
| / |c| = L
| /.
| L/ .
| / .
| / .
|/ .
--------------> X1
x1
L2 = (x1)2 + (x2)2
Now how do we get L when we have non-cartesian coordinates?
We need to introduce the concept of contravariant and
covariant components. In cartesian coordinates the
covariant and contravariant components are the same.
Contravariant components:
u1 = x1 - x2/tanα
u2 = x2/sinα
Covariant components:
u1 = x1
u2 = Lcos(α - β)
= Lcos(α)cos(β) + Lsin(α)sin(β)
Now Lcosβ = x1 and Lsinβ = x2
u2 = x1cosα + x2sinα
To get L2 try:
u1u1 = x1(x1 - x2/tanα) = (x1)2 - (x1x2/tanα)
u2u2 = (x1cosα + x2sinα)x2/sinα = (x1x2/tanα) + (x2)2
Therefore,
u1u1 + u2u2 = (x1)2 + (x1)2
Tranformation Matrices
----------------------
We can write:
- - - -
| u1 | = H | x1 |
| u2 | | x2 |
- - - -
where
- - - -
H = | ∂u1/∂x1 ∂u1/∂x2 | = | 1 -1/tanα |
| ∂u2/∂x1 ∂u2/∂x2 | | 0 1/sinα |
- - - -
and
- - - -
| u1 | = M | x1 |
| u2 | | x2 |
- - - -
where
- - - -
M = | ∂u1/∂x1 ∂u1/∂x2 | = | 1 0 |
| ∂u2/∂x1 ∂u2/∂x2 | | cosα sinα |
- - - -
H and M are transformation matrices (JACOBEAN MATRICES)
How do we convert between the covariant and contravariant
components and vice versa?
- - - -
| x1 | = H-1 | u1 |
| x2 | | u2 |
- - - -
and
- - - -
| x1 | = M-1 | u1 |
| x2 | | u1 |
- - - -
where H-1 and M-1 are the inverse of the JACOBEAN MATRICES
H and M. So,
- - - -
H-1 | u1 | = M-1 | u1 |
| u2 | | u2 |
- - - -
Therefore,
- - - -
| u1 | = HM-1 | u1 |
| u2 | | u2 |
- - - -
So,
- - - -
| u1 | = gij | u1 |
| u2 | | u2 |
- - - -
where gij is the INVERSE METRIC tensor.
In summary, we can construct a map as follows:
u1
u2
/ ^ ^
/ / | |
M-1/ /M | |
/ / | |
v / | |
x1 gij| |gij
x2 | |
^ \ | |
\ \ | |
H-1\ \H | |
\ \ | |
\ v v
u1
u2
From the map:
- -
gij = HM-1 where M-1 = (1/sinα)| sinα 0 |
| -cosα 1 |
- -
Therefore,
- -
gij = (1/sin2α)| 1 -cosα |
| -cosα 1 |
- -
Now gij = (gij)-1 (= H-1M from the map). Where gij is the
METRIC TENSOR. Therefore,
- -
gij = (1/det[gij])| 1/sin2α -cosα/sin2α |
| -cosα/sin2α 1/sin2α |
- -
det[gij] = 1/sin4α - cos2α/sin4α = sin2α/sin4α = 1/sin2α
So,
- -
gij = sin2α| 1/sin2α cosα/sin2α |
| cosα/sin2α 1/sin2α |
- -
- -
= | 1 cosα |
| cosα 1 |
- -
- - - -
Now gijgij = (1/sin2α)| 1 -cosα || 1 cosα |
| -cosα 1 || cosα 1 |
- - - -
- -
= (1/sin2α)| 1 - cos2α cosα - cosα |
|-cosα + cosα -cos2α + 1 |
- -
- -
= | 1 0 |
| 0 1 |
- -
Now gij = H-1M from the map so M = gijH
- - - -
= | 1 cosα || 1 -1/tanα |
| cosα 1 || 0 1/sinα |
- - - -
- -
= | 1 (-1/tanα + cosα/sinα) |
| cosα (-cosα/tanα + 1/sinα) |
- -
- -
= | 1 0 | which agrees with before.
| cosα sinα |
- -
Similarly, gij = HM-1 from the map so H = gijM
H = gijM
- - - -
= 1/sin2α | 1 -cosα || 1 0 |
|-cosα 1 ||cosα sinα |
- - - -
- -
= | 1 -1/tanα | which agrees with before.
| 0 1/sinα |
- -
In summary, the metric tensor enables us to convert
the contravariant components of a vector to their
covariant form, and vice versa, in the following
manner:
- - - - 2
gij | u1 | = | u1 | <--> Σgijuj = ui
| u2 | | u2 | j=1
- - - -
and
- - - - 2
gij | u1 | = | u1 | <--> Σgijuj = ui
| u2 | | u2 | j=1
- - - -
This process of going between contravariant and
covariant components, and vice versa, is referred
as the "raising and lowering of indeces".