Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
Astronomical Distance Units .
-
Celestial Coordinates .
-
Celestial Navigation .
-
Location of North and South Celestial Poles .

Chemistry

-
Avogadro's Number
-
Balancing Chemical Equations
-
Stochiometry
-
The Periodic Table .

Classical Physics

-
Archimedes Principle
-
Bernoulli Principle
-
Blackbody (Cavity) Radiation and Planck's Hypothesis
-
Center of Mass Frame
-
Comparison Between Gravitation and Electrostatics
-
Compton Effect .
-
Coriolis Effect
-
Cyclotron Resonance
-
Dispersion
-
Doppler Effect
-
Double Slit Experiment
-
Elastic and Inelastic Collisions .
-
Electric Fields
-
Error Analysis
-
Fick's Law
-
Fluid Pressure
-
Gauss's Law of Universal Gravity .
-
Gravity - Force and Acceleration
-
Hooke's law
-
Ideal and Non-Ideal Gas Laws (van der Waal)
-
Impulse Force
-
Inclined Plane
-
Inertia
-
Kepler's Laws
-
Kinematics
-
Kinetic Theory of Gases .
-
Kirchoff's Laws
-
Laplace's and Poisson's Equations
-
Lorentz Force Law
-
Maxwell's Equations
-
Moments and Torque
-
Nuclear Spin
-
One Dimensional Wave Equation .
-
Pascal's Principle
-
Phase and Group Velocity
-
Planck Radiation Law .
-
Poiseuille's Law
-
Radioactive Decay
-
Refractive Index
-
Rotational Dynamics
-
Simple Harmonic Motion
-
Specific Heat, Latent Heat and Calorimetry
-
Stefan-Boltzmann Law
-
The Gas Laws
-
The Laws of Thermodynamics
-
The Zeeman Effect .
-
Wien's Displacement Law
-
Young's Modulus

Climate Change

-
Keeling Curve .

Cosmology

-
Baryogenesis
-
Cosmic Background Radiation and Decoupling
-
CPT Symmetries
-
Dark Matter
-
Friedmann-Robertson-Walker Equations
-
Geometries of the Universe
-
Hubble's Law
-
Inflation Theory
-
Introduction to Black Holes .
-
Olbers' Paradox
-
Penrose Diagrams
-
Planck Units
-
Stephen Hawking's Last Paper .
-
Stephen Hawking's PhD Thesis .
-
The Big Bang Model

Finance and Accounting

-
Amortization
-
Annuities
-
Brownian Model of Financial Markets
-
Capital Structure
-
Dividend Discount Formula
-
Lecture Notes on International Financial Management
-
NPV and IRR
-
Periodically and Continuously Compounded Interest
-
Repurchase versus Dividend Analysis

Game Theory

-
The Truel .

General Relativity

-
Accelerated Reference Frames - Rindler Coordinates
-
Catalog of Spacetimes .
-
Curvature and Parallel Transport
-
Dirac Equation in Curved Spacetime
-
Einstein's Field Equations
-
Geodesics
-
Gravitational Time Dilation
-
Gravitational Waves
-
One-forms
-
Quantum Gravity
-
Relativistic, Cosmological and Gravitational Redshift
-
Ricci Decomposition
-
Ricci Flow
-
Stress-Energy Tensor
-
Stress-Energy-Momentum Tensor
-
Tensors
-
The Area Metric
-
The Equivalence Principal
-
The Essential Mathematics of General Relativity
-
The Induced Metric
-
The Metric Tensor
-
Vierbein (Frame) Fields
-
World Lines Refresher

Lagrangian and Hamiltonian Mechanics

-
Classical Field Theory .
-
Euler-Lagrange Equation
-
Ex: Newtonian, Lagrangian and Hamiltonian Mechanics
-
Hamiltonian Formulation .
-
Liouville's Theorem
-
Symmetry and Conservation Laws - Noether's Theorem

Macroeconomics

-
Lecture Notes on International Economics
-
Lecture Notes on Macroeconomics
-
Macroeconomic Policy

Mathematics

-
Amplitude, Period and Phase
-
Arithmetic and Geometric Sequences and Series
-
Asymptotes
-
Augmented Matrices and Cramer's Rule
-
Basic Group Theory
-
Basic Representation Theory
-
Binomial Theorem (Pascal's Triangle)
-
Building Groups From Other Groups
-
Completing the Square
-
Complex Numbers
-
Composite Functions
-
Conformal Transformations .
-
Conjugate Pair Theorem
-
Contravariant and Covariant Components of a Vector
-
Derivatives of Inverse Functions
-
Double Angle Formulas
-
Eigenvectors and Eigenvalues
-
Euler Formula for Polyhedrons
-
Factoring of a3 +/- b3
-
Fourier Series and Transforms .
-
Fractals
-
Gauss's Divergence Theorem
-
Grassmann and Clifford Algebras .
-
Heron's Formula
-
Index Notation (Tensors and Matrices)
-
Inequalities
-
Integration By Parts
-
Introduction to Conformal Field Theory .
-
Inverse of a Function
-
Law of Sines and Cosines
-
Line Integrals, ∮
-
Logarithms and Logarithmic Equations
-
Matrices and Determinants
-
Matrix Exponential
-
Mean Value and Rolle's Theorem
-
Modulus Equations
-
Orthogonal Curvilinear Coordinates .
-
Parabolas, Ellipses and Hyperbolas
-
Piecewise Functions
-
Polar Coordinates
-
Polynomial Division
-
Quaternions 1
-
Quaternions 2
-
Regular Polygons
-
Related Rates
-
Sets, Groups, Modules, Rings and Vector Spaces
-
Similar Matrices and Diagonalization .
-
Spherical Trigonometry
-
Stirling's Approximation
-
Sum and Differences of Squares and Cubes
-
Symbolic Logic
-
Symmetric Groups
-
Tangent and Normal Line
-
Taylor and Maclaurin Series .
-
The Essential Mathematics of Lie Groups
-
The Integers Modulo n Under + and x
-
The Limit Definition of the Exponential Function
-
Tic-Tac-Toe Factoring
-
Trapezoidal Rule
-
Unit Vectors
-
Vector Calculus
-
Volume Integrals

Microeconomics

-
Marginal Revenue and Cost

Particle Physics

-
Feynman Diagrams and Loops
-
Field Dimensions
-
Helicity and Chirality
-
Klein-Gordon and Dirac Equations
-
Regularization and Renormalization
-
Scattering - Mandelstam Variables
-
Spin 1 Eigenvectors .
-
The Vacuum Catastrophe

Probability and Statistics

-
Box and Whisker Plots
-
Categorical Data - Crosstabs
-
Chebyshev's Theorem
-
Chi Squared Goodness of Fit
-
Conditional Probability
-
Confidence Intervals
-
Data Types
-
Expected Value
-
Factor Analysis
-
Hypothesis Testing
-
Linear Regression
-
Monte Carlo Methods
-
Non Parametric Tests
-
One-Way ANOVA
-
Pearson Correlation
-
Permutations and Combinations
-
Pooled Variance and Standard Error
-
Probability Distributions
-
Probability Rules
-
Sample Size Determination
-
Sampling Distributions
-
Set Theory - Venn Diagrams
-
Stacked and Unstacked Data
-
Stem Plots, Histograms and Ogives
-
Survey Data - Likert Item and Scale
-
Tukey's Test
-
Two-Way ANOVA

Programming and Computer Science

-
Hashing
-
How this site works ...
-
More Programming Topics
-
MVC Architecture
-
Open Systems Interconnection (OSI) Standard - TCP/IP Protocol
-
Public Key Encryption

Quantum Computing

-
The Qubit .

Quantum Field Theory

-
Creation and Annihilation Operators
-
Field Operators for Bosons and Fermions
-
Lagrangians in Quantum Field Theory
-
Path Integral Formulation
-
Relativistic Quantum Field Theory

Quantum Mechanics

-
Basic Relationships
-
Bell's Theorem
-
Bohr Atom
-
Clebsch-Gordan Coefficients .
-
Commutators
-
Dyson Series
-
Electron Orbital Angular Momentum and Spin
-
Entangled States
-
Heisenberg Uncertainty Principle
-
Ladder Operators .
-
Multi Electron Wavefunctions
-
Pauli Exclusion Principle
-
Pauli Spin Matrices
-
Photoelectric Effect
-
Position and Momentum States
-
Probability Current
-
Schrodinger Equation for Hydrogen Atom
-
Schrodinger Wave Equation
-
Schrodinger Wave Equation (continued)
-
Spin 1/2 Eigenvectors
-
The Differential Operator
-
The Essential Mathematics of Quantum Mechanics
-
The Observer Effect
-
The Quantum Harmonic Oscillator .
-
The Schrodinger, Heisenberg and Dirac Pictures
-
The WKB Approximation
-
Time Dependent Perturbation Theory
-
Time Evolution and Symmetry Operations
-
Time Independent Perturbation Theory
-
Wavepackets

Semiconductor Reliability

-
The Weibull Distribution

Solid State Electronics

-
Band Theory of Solids .
-
Fermi-Dirac Statistics .
-
Intrinsic and Extrinsic Semiconductors
-
The MOSFET
-
The P-N Junction

Special Relativity

-
4-vectors .
-
Electromagnetic 4 - Potential
-
Energy and Momentum, E = mc2
-
Lorentz Invariance
-
Lorentz Transform
-
Lorentz Transformation of the EM Field
-
Newton versus Einstein
-
Spinors - Part 1 .
-
Spinors - Part 2 .
-
The Lorentz Group
-
Velocity Addition

Statistical Mechanics

-
Black Body Radiation
-
Entropy and the Partition Function
-
The Harmonic Oscillator
-
The Ideal Gas

String Theory

-
Bosonic Strings
-
Extra Dimensions
-
Introduction to String Theory
-
Kaluza-Klein Compactification of Closed Strings
-
Strings in Curved Spacetime
-
Toroidal Compactification

Superconductivity

-
BCS Theory
-
Introduction to Superconductors
-
Superconductivity (Lectures 1 - 10)
-
Superconductivity (Lectures 11 - 20)

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
Chiral Superfields
-
Generators of a Supergroup
-
Grassmann Numbers
-
Introduction to Supersymmetry
-
The Gauge Hierarchy Problem

The Standard Model

-
Electroweak Unification (Glashow-Weinberg-Salam)
-
Gauge Theories (Yang-Mills)
-
Gravitational Force and the Planck Scale
-
Introduction to the Standard Model
-
Isospin, Hypercharge, Weak Isospin and Weak Hypercharge
-
Quantum Flavordynamics and Quantum Chromodynamics
-
Special Unitary Groups and the Standard Model - Part 1 .
-
Special Unitary Groups and the Standard Model - Part 2
-
Special Unitary Groups and the Standard Model - Part 3 .
-
Standard Model Lagrangian
-
The Higgs Mechanism
-
The Nature of the Weak Interaction

Topology

-

Units, Constants and Useful Formulas

-
Constants
-
Formulas
Last modified: January 26, 2018

Double Slit Experiment ---------------------- δ = path difference = dsinθ' For D>>a, θ' ~ θ therefore δ = dsinθ For a maximum we need dsinθ = mλ Now if θ is small, sinθ ~ tanθ = y/D. Therefore, dy/D = mλ Intensity: I = I0cos2(π.d.sinθ/λ) = I0cos2(π.d.y/λ.D) for small θ It is worth bearing in mind that these results are an idealization assuming an infinitesimally small width of the slits. A full treatment of the situation, accounting for the finite width of the slits requires us to take diffraction into account. Single Slit Diffraction ----------------------- Diffraction manifests itself in the apparent bending of waves around small obstacles and the spreading out of waves past small openings. There are two types - Fraunhoher and Fresnel. Fraunhofer diffraction deals with the limiting cases where the light appoaching the diffracting object is parallel and monochromatic, and where the image plane is at a distance large compared to the size of the diffracting object. The more general case where these restrictions are relaxed is called Fresnel diffraction. Condition for a maximum: Using the same geometry and reasoning as the double slit, the condition is, asinθ = mλ ay/D = mλ Intensity: I = I0[sin(π.a.sinθ/λ)/(π.a.sinθ/λ)]2 = I0[sin(π.a.y/λD)/(π.a.y/λ.D)2 for small θ Diffraction and Interference Combined ------------------------------------- Combined diffraction and interference is obtain by multiplying diffraction intensity for single slit by interference for double slit. Thus, I = I0[cos2(π.d.sinθ/λ)][sin(π.a.sinθ/λ)/(π.a.sinθ/λ)]2 The first and the second terms in the above equation are referred to as the "interference factor" and the "diffraction factor". The former yields the interference substructure, the latter acts as an envelope which sets limits on the the number of interference peaks. Diffraction Grating ------------------- A diffraction grating is a large number of close, parallel equidistant slits ruled on glass or metal. The condition for maximum intensity is the same as that for the double slit. However, as more parallel equidistant slits are added, the intensity and sharpness of the principal maxima increase and those of the subsiduary maxima decrease. Bright or principal maxima are obtained when, dsinθ = mλ d can be calculated from the number of slits per metre. Spectra ------- Diffraction gratings provides a valuable way of studying spectra. If white light is incident normally on a diffraction grating, several colored spectra are observed on either side of the normal. This occurs because the wavelength of violet light is 3.8 x 10-7 m and the wavelength of red light is 7.0 x 10-7 m. Therefore, θ is less for violet than red. Now, dsinθ = 2 x 3.8 x 10-7 for violet the 2nd order spectrum = 7.6 x 10-7 and, dsinθ = 7.0 x 10-7 for red the 1st order spectrum Thus, the red in the 1st order spectrum does not overlap the violet in the 2nd order spectrum. However, overlapping of colors does occur in higher order spectra. Ex: Two slits separated by a distance d = 1cm allow light of wavelength 500nm to pass through and interfere. A screen is situated 10m from the slits, where a pattern of bright and dark fringes are observed. As measured from the center 0th order fringe, what is the distance to the first dark fringe in μm? y = mDλ/d => 1*10*500 x 10-9/10-2 => 5*10-4 => 500μm This is the distance between 2 peaks. The distance from the center is this value/2. Bragg's Law ----------- When x-rays are scattered from a crystal lattice, a diffraction pattern is observed. A plot of the intensity of the scattered waves as a function of scattering angle shows peaks in the pattern when the following condition is satisfied. mλ = 2dsinθ ... Bragg's Law The condition for maximum intensity allows us to calculate details about the crystal structure, or if the crystal structure is known, to determine the wavelength of the x-rays incident upon the crystal.