Wolfram Alpha:
Search by keyword:
Astronomy
Chemistry
Classical Mechanics
Classical Physics
Climate Change
Cosmology
Finance and Accounting
Game Theory
General Relativity
Group Theory
Lagrangian and Hamiltonian Mechanics
Macroeconomics
Mathematics
Mathjax
Microeconomics
Nuclear Physics
Particle Physics
Probability and Statistics
Programming and Computer Science
Quantitative Methods for Business
Quantum Computing
Quantum Field Theory
Quantum Mechanics
Semiconductor Reliability
Solid State Electronics
Special Relativity
Statistical Mechanics
String Theory
Superconductivity
Supersymmetry (SUSY) and Grand Unified Theory (GUT)
The Standard Model
Topology
Units, Constants and Useful Formulas
Elastic and Inelastic Collisions
-------------------------------
Elastic collisions are those in which no kinetic
energy is lost in the collision. Thus,
KEinitial = KEfinal
Inelastic collisions are those in which some
kinetic energy is lost in the collision at
the expense of heat, internal energy etc.
Thus,
KEinitial = KEfinal + U
In both cases, however, the momentum IS conserved.
Thus
pinitial = pfinal
The extreme inelastic collision is one in
which the colliding objects stick together
after the collision. The fraction of the
KE which is lost in the collision process is
determined by the combination of conservation
of energy and conservation of momentum.