Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
-
-
-

Chemistry

-
-
-
-

Classical Mechanics

-

Classical Physics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Climate Change

-

Cosmology

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finance and Accounting

-
-
-
-
-
-
-
-
-

Game Theory

-

General Relativity

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Group Theory

-
-
-
-
-
-

Lagrangian and Hamiltonian Mechanics

-
-
-
-
-
-

Macroeconomics

-
-
-

Mathematics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Mathjax

-

Microeconomics

-

Nuclear Physics

-
-

Particle Physics

-
-
-
-
-
-
-

Probability and Statistics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Programming and Computer Science

-
-
-
-
-
-

Quantitative Methods for Business

-

Quantum Computing

-
-
-

Quantum Field Theory

-
-
-
-
-

Quantum Mechanics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Semiconductor Reliability

-

Solid State Electronics

-
-
-
-
-

Special Relativity

-
-
-
-
-
-
-
-
-
-
-
-

Statistical Mechanics

-
-
-

String Theory

-
-
-
-
-
-

Superconductivity

-
-
-
-
-
-

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
-
-
-
-

The Standard Model

-
-
-
-
-
-
-
-
-
-

Topology

-

Units, Constants and Useful Formulas

-
Last modified: November 18, 2021 ✓

Fourier Series and Transforms ----------------------------- The Fourier Series ------------------ The Fourier Series breaks down a periodic function with period T into the sum of sinusoidal functions. N f(x) = ao + Σ(cos(2πnt/T) + bnsin(2πnt/T)) n=1 T ao = (1/T)∫f(x)dx 0 T an = (2/T)∫cos(2πnt/T)dx 0 L bn = (2/T)∫sin(2πnt/T)dx 0 These equations can also be written in terms of the repeat distance, L, by replacing t with x and T with L. The Fourier Transform --------------------- The Fourier Transform decomposes a non-periodic waveform into into sinusoidal functions. A non-periodic waveform is one where T (or L) -> ∞. F(f) = ∫f(t)exp(-2πift)dt -∞ This represents the waveform in the frequency domain. The inverse transform is: f(t) = ∫F(f)exp(2πift)df; -∞ This represents the waveform in the time domain. F(f) contains information about the amplitude and phase of the sinusoidal components that make up the function f(t). The FT pairs allow a mapping between the time and frequency domains.