Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
-
-
-

Chemistry

-
-
-
-

Classical Mechanics

-

Classical Physics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Climate Change

-

Cosmology

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finance and Accounting

-
-
-
-
-
-
-
-
-

Game Theory

-

General Relativity

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Group Theory

-
-
-
-
-
-

Lagrangian and Hamiltonian Mechanics

-
-
-
-
-
-

Macroeconomics

-
-
-

Mathematics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Mathjax

-

Microeconomics

-

Nuclear Physics

-
-

Particle Physics

-
-
-
-
-
-
-

Probability and Statistics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Programming and Computer Science

-
-
-
-
-
-

Quantitative Methods for Business

-

Quantum Computing

-
-
-

Quantum Field Theory

-
-
-
-
-

Quantum Mechanics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Semiconductor Reliability

-

Solid State Electronics

-
-
-
-
-

Special Relativity

-
-
-
-
-
-
-
-
-
-
-
-

Statistical Mechanics

-
-
-

String Theory

-
-
-
-
-
-

Superconductivity

-
-
-
-
-
-

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
-
-
-
-

The Standard Model

-
-
-
-
-
-
-
-
-
-

Topology

-

Units, Constants and Useful Formulas

-
Last modified: January 26, 2018

Introduction to the Standard Model ---------------------------------- Overview -------- The Standard Model of particle physics is a theory concerning the electromagnetic, weak, and strong nuclear interactions, as well as classifying all known subatomic particles. The Standard Model includes 12 elementary particles of spin 1/2. There are 6 quarks and 6 leptons. Pairs from each classification are grouped together to form a generation, with corresponding particles exhibiting similar physical behavior. Every particle shown has an antiparticle associated with it. Gluons, the photon, the Z and the Higgs boson are their own antiparticle. The W+ boson is the antiparticle of the The W- boson. The mathematics of the elementary particles is grounded in symmetries described by Special Unitary groups and Lie algebras. Quantum Flavordynamics ---------------------- Quantum Flavordynamics involves the transition of the up quark to the down quark and the electron to the neutrino and vice versa. The generators of SU(2) are the Pauli matrices that also describe spin angular momentum. The conserved quantity is the weak isospin (weak isospin has nothing to do with spin - just the same math!). This is apparent when considering the decay of a neutron to a proton. _ udd -> uud + e + νe Electroweak Unification ----------------------- Electroweak unification is described by SU(2)L ⊗ U(1)Y. The generator of U(1)Y is the weak hypercharge defined as. YW = 2(Q - I3) Note: U(1)Y is different to the U(1)em in QED whose generator and conserved quantity is the electric charge, Q, derived from Noether't theorem. Quantum Chromodynamics ---------------------- Quantum Chromodynamics involves the transitions between the 3 quark colors and is described by SU(3). The generators of SU(3) are the Gell-Mann matrices and the conserved quantity is the color charge. The Gell-Mann matrices generalize the Pauli matrices for SU(2) and SU(3) contains SU(2) weak isospin as a subgroup. Gauge Bosons ------------ In the Standard Model, gauge bosons are defined as force carriers that mediate the strong, weak, and electromagnetic fundamental interactions. Transitions between states occur as a result of these interactions. To describes interactions it is necessary to invoke Quantum Field Theory and Lagrangian mechanics. The Lagrangian controls the kinematics of the theory. Each kind of particle is described in terms of a dynamical field that pervades spacetime. The basic idea is to introduce gauge fields into the Lagrangians which make them invariant under local symmetry transformations. The gauge bosons are the quanta of these fields. The mathematics of gauge invariance is based on Yang-Mills theory. The Standard Model is a non-abelian gauge theory with the symmetry group U(1)×SU(2)×SU(3) and has a total of 12 gauge bosons: the photon, 3 weak bosons and 8 gluons. Higgs Mechanism --------------- The Standard Model has been enormously successful in explaining a wide variety of experimental results but until recently could not explain why particles have mass. This riddle was finally solved with the verification of the Higgs mechanism in 2013. The Higgs mechanism postulated that particles gain mass as a result of spontaneously symmetry breaking brought about by the presence of a Higgs Field that permeates the Universe.