Wolfram Alpha:
Search by keyword:
Astronomy
Chemistry
Classical Mechanics
Classical Physics
Climate Change
Cosmology
Finance and Accounting
Game Theory
General Relativity
Group Theory
Lagrangian and Hamiltonian Mechanics
Macroeconomics
Mathematics
Mathjax
Microeconomics
Nuclear Physics
Particle Physics
Probability and Statistics
Programming and Computer Science
Quantitative Methods for Business
Quantum Computing
Quantum Field Theory
Quantum Mechanics
Semiconductor Reliability
Solid State Electronics
Special Relativity
Statistical Mechanics
String Theory
Superconductivity
Supersymmetry (SUSY) and Grand Unified Theory (GUT)
The Standard Model
Topology
Units, Constants and Useful Formulas
Moments and Torque
------------------
R
d3 | d2 d1
----------------------------
| ^ | |
F3 F2 F1
F3d3 = F2d2 + F1d1
R = F1 + F2 + F3
T1 T2
| d1 d2 |
----------------------------
|
F
T1d1 = T2d2
T1 + T2 = F
Ladder Problem
--------------
Consider a ladder leaning against a wall with coefficients of
friction μA and μB. Find the minimum value of θ before slippage
occurs.
Horizontal components:
FAF = FBN
μAFAN = FBN ... 1.
Vertical components:
W = FAN + FBF
W = FAN + μBFBN ... 2.
Moments around A:
(L/2)FW = LFBR
(L/2)Wcosθ = LFBNcos(90 - θ) + LFBFsin(90 - θ)
= LFBNsinθ + LFBFcosθ
check:
θ = 0 => (L/2)W = LFBF
θ = 90 => 0 = LFBN
(L/2)Wcosθ = LFBNsinθ + LμBFBNcosθ
= LFBN(sinθ + μBcosθ)
= LμAFAN(sinθ + μBcosθ)
∴ W = 2μAFAN(tanθ + μB)
From 2.
FAN + μBFBN = 2μAFAN(tanθ + μB)
From 1.
FAN + μAμBFAN = 2μAFAN(tanθ + μB)
∴ 1 + μAμB = 2μA(tanθ + μB)
∴ tanθ = (1 - μAμB)/2μA