Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
-
-
-

Chemistry

-
-
-
-

Classical Mechanics

-

Classical Physics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Climate Change

-

Cosmology

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finance and Accounting

-
-
-
-
-
-
-
-
-

Game Theory

-

General Relativity

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Group Theory

-
-
-
-
-
-

Lagrangian and Hamiltonian Mechanics

-
-
-
-
-
-

Macroeconomics

-
-
-

Mathematics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Mathjax

-

Microeconomics

-

Nuclear Physics

-
-

Particle Physics

-
-
-
-
-
-
-

Probability and Statistics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Programming and Computer Science

-
-
-
-
-
-

Quantitative Methods for Business

-

Quantum Computing

-
-
-

Quantum Field Theory

-
-
-
-
-

Quantum Mechanics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Semiconductor Reliability

-

Solid State Electronics

-
-
-
-
-

Special Relativity

-
-
-
-
-
-
-
-
-
-
-
-

Statistical Mechanics

-
-
-

String Theory

-
-
-
-
-
-

Superconductivity

-
-
-
-
-
-

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
-
-
-
-

The Standard Model

-
-
-
-
-
-
-
-
-
-

Topology

-

Units, Constants and Useful Formulas

-
Last modified: January 26, 2018

Moments and Torque ------------------ R d3 | d2 d1 ---------------------------- | ^ | | F3 F2 F1 F3d3 = F2d2 + F1d1 R = F1 + F2 + F3 T1 T2 | d1 d2 | ---------------------------- | F T1d1 = T2d2 T1 + T2 = F Ladder Problem -------------- Consider a ladder leaning against a wall with coefficients of friction μA and μB. Find the minimum value of θ before slippage occurs. Horizontal components: FAF = FBN μAFAN = FBN ... 1. Vertical components: W = FAN + FBF W = FAN + μBFBN ... 2. Moments around A: (L/2)FW = LFBR (L/2)Wcosθ = LFBNcos(90 - θ) + LFBFsin(90 - θ) = LFBNsinθ + LFBFcosθ check: θ = 0 => (L/2)W = LFBF θ = 90 => 0 = LFBN (L/2)Wcosθ = LFBNsinθ + LμBFBNcosθ = LFBN(sinθ + μBcosθ) = LμAFAN(sinθ + μBcosθ) ∴ W = 2μAFAN(tanθ + μB) From 2. FAN + μBFBN = 2μAFAN(tanθ + μB) From 1. FAN + μAμBFAN = 2μAFAN(tanθ + μB) ∴ 1 + μAμB = 2μA(tanθ + μB) ∴ tanθ = (1 - μAμB)/2μA