Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
-
-
-

Chemistry

-
-
-
-

Classical Mechanics

-

Classical Physics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Climate Change

-

Cosmology

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finance and Accounting

-
-
-
-
-
-
-
-
-

Game Theory

-

General Relativity

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Group Theory

-
-
-
-
-
-

Lagrangian and Hamiltonian Mechanics

-
-
-
-
-
-

Macroeconomics

-
-
-

Mathematics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Mathjax

-

Microeconomics

-

Nuclear Physics

-
-

Particle Physics

-
-
-
-
-
-
-

Probability and Statistics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Programming and Computer Science

-
-
-
-
-
-

Quantitative Methods for Business

-

Quantum Computing

-
-
-

Quantum Field Theory

-
-
-
-
-

Quantum Mechanics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Semiconductor Reliability

-

Solid State Electronics

-
-
-
-
-

Special Relativity

-
-
-
-
-
-
-
-
-
-
-
-

Statistical Mechanics

-
-
-

String Theory

-
-
-
-
-
-

Superconductivity

-
-
-
-
-
-

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
-
-
-
-

The Standard Model

-
-
-
-
-
-
-
-
-
-

Topology

-

Units, Constants and Useful Formulas

-
Last modified: January 26, 2018

Pauli Spin Matrices ------------------- The Pauli matrices are related to the angular momentum operator that corresponds to an observable describing the spin of a spin 1/2 particle. They are Hermitian and unitary. The Pauli matrices (after multiplication by i to make them anti-Hermitian), also generate transformations in the sense of Lie algebras The Pauli spin matrices have eigenvalues of +1 and -1. Thus, sx,y,z|χ> = ±|χ> where χ is the spin wavefunction. (h/2)σx,y,z|χ> = ±|χ> We can represent χ as a linear combination of 'up' and 'down' states as follows: χ = α|up> + β|down> z-axis component: - - - - - - |1 0|| α | = ±| α | |0 -1|| β | | β | - - - - - - Positive: - - - - | α | = +| α | | -β | | β | - - - - ∴ β = -β so β must equal 0 and - - - - | α | = +| α | | -β | | 0 | - - - - Negative: - - - - | α | = -| α | | -β | | β | - - - - ∴ α = -α so α must equal 0 and - - - - | α | = -| 0 | | -β | | β | - - - - Therefore, the eigenvectors are, - - - - | 1 | and | 0 | | 0 | | 1 | - - - - x-axis component: - - - - - - |0 1|| α | = ±| α | |1 0|| β | | β | - - - - - - Positive: - - - - | β | = +| α | | α | | β | - - - - ∴ β = α so - - - - | β | = +| α | | α | | α | - - - - Negative: - - - - | β | = -| β | | α | | α | - - - - ∴ β = -α so - - - - | β | = -| α | | α | | -α | - - - - Now, |α|2 + |β|2 = 1 ∴ 2α2 = 1 so α = β = 1/√2 Therefore, the eigenvectors are, - - - - |1/√2| and | 1/√2| |1/√2| |-1/√2| - - - - y-axis component: - - - - - - |0 -i|| α | = ±| α | |i 0|| β | | β | - - - - - - Positive: - - - - | -iβ | = +| α | | iα | | β | - - - - ∴ -iβ = α so β = iα and - - - - | -iβ | = +| α | | iα | | iα | - - - - Negative: - - - - | -iβ | = -| α | | iα | | β | - - - - ∴ -iβ = -α so β = -iα and - - - - | -iβ | = -| α | | iα | | -iα | - - - - Therefore, the eigenvectors are, - - - - |1/√2| and | 1/√2| |i/√2| |-i/√2| - - - - Since Sx, Sy, Sz must have eigenvalues of +/-h/2, the σ matrices must have eigenvalues of +/-1. S2 = Sx2 + Sy2 + Sz2 Sx = (h/2)σx Sy = (h/2)σy Sz = (h/2)σz S2 = Sx2 + Sy2 + Sz2 |S|2 = (h2/4){σx2 + σy2 + σz2} - - - - - - = (h2/4){| 1 0 | + | 1 0 | + | 1 0 |}   | 0 1 | | 0 1 | | 0 1 | - - - - - - - - = (3h2/4)| I | - - - - = s(s + 1)h2| I | where s = 1/2 - - This should be compared with the equivalent relation for the orbital angular momentum operator that is obtained when solving the Schrodinger equation for the hydrogen atom. |L|2 = l(l + 1)h2