Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
-
-
-

Chemistry

-
-
-
-

Classical Mechanics

-

Classical Physics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Climate Change

-

Cosmology

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finance and Accounting

-
-
-
-
-
-
-
-
-

Game Theory

-

General Relativity

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Group Theory

-
-
-
-
-
-

Lagrangian and Hamiltonian Mechanics

-
-
-
-
-
-

Macroeconomics

-
-
-

Mathematics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Mathjax

-

Microeconomics

-

Nuclear Physics

-
-

Particle Physics

-
-
-
-
-
-
-

Probability and Statistics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Programming and Computer Science

-
-
-
-
-
-

Quantitative Methods for Business

-

Quantum Computing

-
-
-

Quantum Field Theory

-
-
-
-
-

Quantum Mechanics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Semiconductor Reliability

-

Solid State Electronics

-
-
-
-
-

Special Relativity

-
-
-
-
-
-
-
-
-
-
-
-

Statistical Mechanics

-
-
-

String Theory

-
-
-
-
-
-

Superconductivity

-
-
-
-
-
-

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
-
-
-
-

The Standard Model

-
-
-
-
-
-
-
-
-
-

Topology

-

Units, Constants and Useful Formulas

-
Last modified: December 17, 2021 ✓

Symmetric Groups ---------------- S4 = permutations of {1,2,3,4} |Sn| = n! ∴ |S4| = 24 elements. These are 1234, 1342, 4321 etc. etc. Permutations can be regarded as the map, f: {1,2,3,4} -> {1,2,3,4} Where f is a function. Treating the permutations as functions allows us to define multiplicatio. Consider f: 1234 -> 1342 and g: 1234 -> 4321 The corresponding functions are: f(1) = 1, f(2) = 3, f(3) = 4, f(4) = 2 g(1) = 4, g(2) = 3, g(3) = 2, g(4) = 1 The compositions are: f o g(1) = 2, f o g(2) = 4 f o g(3) = 3 f o g(4) = 1 This is sometimes written in shorthand as: - - - - - - | 1 2 3 4 | . | 1 2 3 4 | = | 1 2 3 4 | | 1 3 4 2 | | 4 3 2 1 | | 2 4 3 1 | - - - - - - The identity permutation is: - - | 1 2 3 4 | | 1 2 3 4 | - - The inverses can be obtained by interchanging the 2 rows (and sorting the order). For example, - - - - - - | 1 2 3 4 |-1 = | 1 3 4 2 | = | 1 2 3 4 | | 1 3 4 2 |  | 1 2 3 4 | | 1 4 2 3 | - - - - - - Therefore, - - - - - - | 1 2 3 4 | . | 1 2 3 4 | = | 1 2 3 4 | | 1 3 4 2 | | 1 4 2 3 | | 1 2 3 4 | - - - - - - Multiplication enables us to construct a Cayley table as follows: x | 1234 | 4321 | .... -----+------+------+------ 1234 | 1234 | 4321 | .... -----+------+------+------ 1342 | 1342 | 2431 | .... -----+------+------+------ .... | .... | .... | .... Completing the entire table shows that the closure property is satisfied. Cycle Notation -------------- Another notation used is cycle notation. Consider: - - | 1 2 3 4 5 6 7 8 | | 5 4 7 6 2 8 3 1 | - - (1 -> 5 -> 2 -> 4 -> 6 -> 8 -> 1 and 3-> 7 (1 5 2 4 6 8)(3 7) Cayley's Theorem ---------------- Every finite group is isomorphic to a subgroup of the symmetric group. Cayley's theorem can be understood as a group action on itself whereby multiplying an element on the left by another element produces another element. We can think of the ith row of the Cayley table as defining a function, fi which takes j to i.j. This function can be seen as a permutation of the elements of the group and as a element of the symmetric group. Example: Consider the symmetry group of the square, D4: D4 = {R0,R90,R180,R270,m1,m212} R0 = 1234 R90 = 2341 R180 = 3412 R270 = 4123 m1 = 2143 m2 = 4321 δ1 = 3214 δ2 = 1432 The corresponding Cayley table (partial) is: x | 1234 | 2341 | 2143 ... -----+------+------+------ 1234 | 1234 | 2341 | 2143 ... -----+------+------+------ 2341 | 2341 | 3412 | 3214 ... -----+------+------+------ 2143 | 2143 | 1432 | 1234 ... . . . . . . . . . . . . If the entire table is completed it is easy to see that each row is a realization of D4 as a subgroup of S4.