Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
-
-
-

Chemistry

-
-
-
-

Classical Mechanics

-

Classical Physics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Climate Change

-

Cosmology

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finance and Accounting

-
-
-
-
-
-
-
-
-

Game Theory

-

General Relativity

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Group Theory

-
-
-
-
-
-

Lagrangian and Hamiltonian Mechanics

-
-
-
-
-
-

Macroeconomics

-
-
-

Mathematics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Mathjax

-

Microeconomics

-

Nuclear Physics

-
-

Particle Physics

-
-
-
-
-
-
-

Probability and Statistics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Programming and Computer Science

-
-
-
-
-
-

Quantitative Methods for Business

-

Quantum Computing

-
-
-

Quantum Field Theory

-
-
-
-
-

Quantum Mechanics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Semiconductor Reliability

-

Solid State Electronics

-
-
-
-
-

Special Relativity

-
-
-
-
-
-
-
-
-
-
-
-

Statistical Mechanics

-
-
-

String Theory

-
-
-
-
-
-

Superconductivity

-
-
-
-
-
-

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
-
-
-
-

The Standard Model

-
-
-
-
-
-
-
-
-
-

Topology

-

Units, Constants and Useful Formulas

-
Last modified: January 26, 2018

Time Dependent Perturbation Theory ----------------------------------- Consider a small time dependent perturbation, ΔH, to the Hamiltonian, H0. We assume that the system before the perturbation is in an eigenstate. We can write this as: H'|ψ> = H0|ψ> + ΔH|ψ> ... 1. ψ = Σnan(t)un(k)exp(-iωnt)) where un(k) = exp(ikx) Note that if ΔH is time-independent the sytem will only go into energy states that have the same energy as the initial state. These are referred to as stationary states. If ΔH is a function of time then the system will go into energy states that differ by hω from the energy of the initial state. From the time dependent Schrodinger equation we get: H'|ψ = ih∂/∂t|Ψ> Expanding we get: LHS of 1. Σnih(∂an(t)/∂t)un(k)exp(-iωnt)) + Σnhωnan(t)un(k)exp(-iωnt)) RHS of 1. Using H0|ψ> = hωn|ψ> Σnhωnan(t)un(k)exp(-iωnt)) + ΣnΔHan(t)un(k)exp(-iωnt)) Equating the two gives: Σnih(∂an(t)/∂t)un(k)exp(-iωnt)) = ΣnΔHan(t)un(k)exp(-iωnt)) If we multiply sides by ψ* = um*(k)(exp(iωmt) we get: Σnih(∂an(t)/∂t)<um*(k)|un(k)>exp(i(ωmt - ωnt)) = Σn<um(k)|ΔH|un(k)>exp(i(ωmt - ωnt)) Which after applying the orthogonality condition gives: ih(∂an(t)/∂t) = Σn<um(k)|ΔH|un(k)>exp(i(ωmt - ωnt)) Therefore, an(t) = (-i/h)<um(k)|ΔH|un(k)>∫dt exp(i(ωmt - ωnt)) = (2/h)<um(k)|ΔH|un(k)>exp(iωt/2) sin(ωt/2)/ω Where ω = (ωm - ωn) The transition rate is then: Γn->m = d|an(t)|2/dt = (2/h2)|<um(k)|ΔH|un(k)>|2sin(ωt)/ω If there are a continuum of energy states close to ωn then: +∞ Γi->f = (2/h)|<f|ΔH|i>|2 ∫dω ρ(ω)sin(ωt)/ω -∞ Noting that E = hω and where ρ(ω) is the density of final states. Γi->f = (2π/h)|<f|ΔH|i>|2 ρ(ω) This is referred to as FERMI's GOLDEN RULE. The transition probability is independent of time (constant). The <f|ΔH|i> term is called the MATRIX ELEMENT for the transition. The matrix element can be placed in the form of an integral as: Mif = ∫ψf*ΔHψidV V = volume This of the general form used to find the expectation value of an operator (observable). = <ψ|O|ψ> = ∫ψ*Oψ dV Mif = ∫ψf*ΔHψidV