Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
-
-
-

Chemistry

-
-
-
-

Classical Mechanics

-

Classical Physics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Climate Change

-

Cosmology

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finance and Accounting

-
-
-
-
-
-
-
-
-

Game Theory

-

General Relativity

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Group Theory

-
-
-
-
-
-

Lagrangian and Hamiltonian Mechanics

-
-
-
-
-
-

Macroeconomics

-
-
-

Mathematics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Mathjax

-

Microeconomics

-

Nuclear Physics

-
-

Particle Physics

-
-
-
-
-
-
-

Probability and Statistics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Programming and Computer Science

-
-
-
-
-
-

Quantitative Methods for Business

-

Quantum Computing

-
-
-

Quantum Field Theory

-
-
-
-
-

Quantum Mechanics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Semiconductor Reliability

-

Solid State Electronics

-
-
-
-
-

Special Relativity

-
-
-
-
-
-
-
-
-
-
-
-

Statistical Mechanics

-
-
-

String Theory

-
-
-
-
-
-

Superconductivity

-
-
-
-
-
-

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
-
-
-
-

The Standard Model

-
-
-
-
-
-
-
-
-
-

Topology

-

Units, Constants and Useful Formulas

-
Last modified: January 26, 2018

Tukey's Test ------------ The confidence intervals for the difference in means and proportions are: Large samples: _  _ x1 - x2 +/- Zα/2SE Small samples: _  _ x1 - x2 +/- tα/2SEp (equal variance) _  _ x1 - x2 +/- tα/2SE (unequal variance) The pooled standard error for equal variances is: SEp = sp√(1/n1 + 1/n2) Where sp2 = [(n1 - 1)s12 + (n2 - 1)s22]/[(n1 - 1) + (n2 - 1)] with n1 + n2 - 2 degrees of freedom. The standard error for unequal variances is: SE = √(s12/n1 + s22/n2) SE1 = s1/√n1 = √(s12/n1) and SE2 = s2/√n2 = √(s22/n2) Where the df is the integer part of: √(s12/n1 + s22/n2) df = --------------------------------------- ((s12/n1)2/(n1 - 1) + ((s22/n2)2/(n2 - 1) Tukey's test says: μ1 - μ2 (-,+) no significant difference. μ1 - μ2 (+,+) μ1 > μ2 μ1 - μ2 (-,-) μ1 < μ2