Redshift Academy

Wolfram Alpha:         

  Search by keyword:  

Astronomy

-
-
-
-

Chemistry

-
-
-
-

Classical Mechanics

-

Classical Physics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Climate Change

-

Cosmology

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finance and Accounting

-
-
-
-
-
-
-
-
-

Game Theory

-

General Relativity

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Group Theory

-
-
-
-
-
-

Lagrangian and Hamiltonian Mechanics

-
-
-
-
-
-

Macroeconomics

-
-
-

Mathematics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Mathjax

-

Microeconomics

-

Nuclear Physics

-
-

Particle Physics

-
-
-
-
-
-
-

Probability and Statistics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Programming and Computer Science

-
-
-
-
-
-

Quantitative Methods for Business

-

Quantum Computing

-
-
-

Quantum Field Theory

-
-
-
-
-

Quantum Mechanics

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Semiconductor Reliability

-

Solid State Electronics

-
-
-
-
-

Special Relativity

-
-
-
-
-
-
-
-
-
-
-
-

Statistical Mechanics

-
-
-

String Theory

-
-
-
-
-
-

Superconductivity

-
-
-
-
-
-

Supersymmetry (SUSY) and Grand Unified Theory (GUT)

-
-
-
-
-

The Standard Model

-
-
-
-
-
-
-
-
-
-

Topology

-

Units, Constants and Useful Formulas

-
Last modified: January 26, 2018

Wavepackets ----------- Wavefunctions of the form ψ(x) = Aexp(ipx/h) are referred to as FREE PARTICLE wavefunctions and are constant throughout space. As such they are somewhat artificial (but nonetheless very useful) and do not represent a localized particle. To represent a localized particle it is necessary to construct a WAVEPACKET by superpositioning basis vectors (plane waves). Consider the Gaussian distribution: P(x) = (1/√2πσx2)exp(-[x - xo]2/2σx2) Construct a wavepacket of the form: ψ(x) = (1/2πα)1/4exp(-x2/4α)exp(ikox) where (1/2πα)1/4 is the normalization factor and 4α = 2σx2. This looks like: |ψ(x)> = ΣkAk|exp(ikox)> Where, A(k) = (1/√2π)∫ψ(x)exp(-ikx)dx = (1/√2π)∫(1/2πα)1/4exp(-x2/4α)exp(ikox)exp(-ikx)dx = (2α/π)1/4exp(-α[k - ko]2) So we can write out original wavefunction in an equivalent form as: ψ(x) = Σk(2α/π)1/4exp(-α[k - ko]2)exp(ikx) For a free electron E = h2k2/2m = hω ∴ ω = hk2/2m Phase velocity: vp = fλ = ω/k since k = 2π/λ vp = ω/k = hk/2m Group velocity: vg = ∂ω/∂k = hk/m